MAIMAN

ELECTRONICS

2

Laser Diode Driver Library

Maiman Electronics

e-mail: info@maimanelectronics.com
website: www.maimanelectronics.com

Version: 1.0.1 - 2025
Python Version: 3.9 or higher

mailto:info@maimanelectronics.com
http://www.maimanelectronics.com/

Maiman Electronics

LASER DIODE DRIVER LIBRARY DOCUMENTATION 2
OVERVIEW 2
KEY FEATURES 2
UsE CASES 3
LIBRARY COMPONENTS 3
REQUIREMENTS 3

DEVICE CLASS 4
CONSTRUCTOR 4
PuBLIC METHODS 4

DEVICEFACTORY CLASS 7
CLASS ATTRIBUTES 7
STATIC METHODS 8

SERIALCOMMUNICATION CLASS 8
CONSTRUCTOR 8
PuBLIC METHODS 9
PRIVATE METHODS 10

DEVICEMODEL CLASS 12
CONSTRUCTOR 12
PuBLIC METHODS 12
PRIVATE METHODS 13
CONFIGURATION SECTIONS 16
CONSTRUCTOR 17
PuBLIC METHODS 17
PRIVATE METHODS 18
PROPERTIES 18
YAML FILE STRUCTURE 19

COMMAND DATACLASS 22
FIELDS 22
ADDITIONAL FIELDS FOR SPECIFIC COMMAND TYPES 24
DEVICESTATES ENUM 25

LOGGER CLASS 25
CONSTRUCTOR 25
PuBLIC METHODS 26
PRIVATE METHODS 27
LOGEVENT DATACLASS 27
EXCEPTION: DEVICEERROR 27

EXAMPLE OF USAGE 28
RUNNING THE TEST SCRIPT 28
LIST OF METHODS USED IN THE SCRIPT: 29
CREATING CusTOM METHODS 31

Maiman Electronics

Laser Diode Driver Library Documentation

Overview

The Laser Diode Driver Library is a Python-based library designed to facilitate the
communication, configuration, and control of laser diode drivers through serial communication.
This library provides a comprehensive and modular interface for interacting with various device
parameters, such as current, frequency, voltage, and duration, while also supporting device state
management and error handling.

With built-in support for logging, state management, and device monitoring, the library ensures
that users can efficiently manage laser diode drivers with minimal overhead. Whether you're
working on a simple configuration task or need more complex device operations, this library
provides the necessary tools for streamlined control.

Key Features

e Serial Communication: Easily interface with laser diode drivers over serial communication
(UART) using the SerialCommunication class.

o Device Configuration: Load and apply device settings from YAML configuration files using
the DeviceConfig class, making it simple to configure and manage devices across different
projects.

e Parameter Management: Set and retrieve essential device parameters such as current,
frequency, voltage, and duration via the Device class.

o Device State Control: Control and monitor the state of the laser diode driver, allowing
you to enable or disable operations, manage current sources, and control interlocks.

o Logger Integration: Log device operations, warnings, and errors with various levels of
verbosity (DEBUG, INFO, WARNING, ERROR) using the Logger class. This makes it easy to
track device behavior and troubleshoot any issues that arise during operation.

o Factory Pattern for Device Management: The library uses a DeviceFactory class, which
provides a singleton instance of the device. This pattern ensures that the same instance
is reused throughout the application, simplifying device management.

e Custom Commands and Operations: Implement custom device operations by leveraging
the flexible command structure within the library. Users can send commands directly to
the device or configure the device’s behavior through high-level abstractions.

e Error Handling: The library provides built-in error handling and custom exceptions like
DeviceError to ensure smooth device operations and provide clear diagnostics when issues
arise.

o Extensibility: The modular design allows developers to extend or customize the library
for their specific needs. Whether adding support for new commands or handling new
devices, the architecture is designed to be flexible and scalable.

Maiman Electronics

Use Cases

Device Calibration: Users can set precise parameters such as current and voltage for
calibrating laser diode drivers.

Laser Diode Control: Easily control the operation states, including enabling or disabling
the laser diode, and retrieve real-time device statuses.

Automated Testing: Integrate the library into automated systems to test and verify laser
diode drivers for specific conditions or configurations.

Data Logging: Use the logging features to record operations and errors for diagnostics
and post-operation analysis.

Library Components

DeviceFactory: Centralized management of the device instance, ensuring singleton behavior
and simplifying initialization.

Device: High-level interface for interacting with device parameters and performing
operations.

DeviceModel: Encapsulation of device parameters and command codes, providing a
structured approach to device configuration.

SerialCommunication: Handles the low-level communication with the laser diode driver over
serial ports.

Command: Dataclass for storing command details such as codes, values, and descriptions.
Logger: Provides detailed logging of device operations, errors, and events, supporting
various log levels.

DeviceConfig: Loads and manages configuration settings from YAML files, enabling easy
device configuration and updates.

Requirements

The requirements.txt file lists the external dependencies required to run and develop the Laser
Diode Driver library.

Core Dependencies:

pyserial>=3.5: For serial communication with the laser diode driver hardware.
PyYAML>=6.0.1: For parsing YAML configuration files.

Development and Testing Dependencies:

pytest>=8.3.3: For running automated tests.

To install the dependencies, run:

pip install -r requirements.txt

Maiman Electronics

This ensures all necessary packages are installed for both runtime and development
environments.

Device Class

The Device class represents a Singleton that manages communication with a physical device. It
provides methods to retrieve and set parameters, manage device states, and handle logging of
events. It interfaces with the device via SerialCommunication, retrieves configurations from
DeviceConfig, and uses DeviceModel to manage device commands and parameters.

Constructor

new__ (cls, *args, **kwargs)

Ensures that only one instance of the Device class is created (Singleton pattern).

__init__ (self, device_model: DeviceModel, serial comm: SerialCommunication, device config:
DeviceConfig, logger: Optional [Logger] = None)

Initializes the Device instance, setting up serial communication, configuration, and logging.

¢ Parameters:
o device_model (DeviceModel): Manages device parameters and commands.
o serial_comm (SerialCommunication): Handles serial communication with the
device.
device_config (DeviceConfig): Loads and stores device configurations.
logger (Optional [Logger]): Optional logger for recording events and errors.

Public Methods
log_event (self, message: str, level: str = LOG_LEVEL_INFO) -> None
Logs events with proper encoding to handle UTF-8 and ASCII fallback in case of encoding issues.

e Parameters:
o message (str): The message to log.
o level (str): The log level (INFO, DEBUG, ERROR, WARNING).

__getattr__ (self, name: str)

Handles dynamic attribute access for parameters and states. This method is invoked
automatically when an attribute is accessed that does not already exist on the instance. It

4

Maiman Electronics

provides support for methods like get_<parameter>, set_<parameter>, getState_<state>, and
setState_<state> to retrieve or set parameter values or device states dynamically.

e Parameters:

o name (str): The name of the dynamically accessed attribute.
e Raises:

o AttributeError: If the dynamically accessed attribute does not follow the expected
naming conventions.

retrieve_device_id(self) -> int

Retrieves the device ID from the hardware and logs the result. Handles any exceptions during
communication.

¢ Returns:
o The device ID as a 4-character hexadecimal string.

initialize_device(self) -> None

Initializes the device by retrieving its ID, loading its configuration, and setting up commands
from the model.

get_parameter (self, name: str, param_type: str) -> Optional [Union[float, int]]

Retrieves a parameter value from the device, handling signed conversions and applying the
correct divider for scaling.

e Parameters:

o name (str): The name of the parameter.

o param_type (str): The type of the parameter (e.g., "code").
e Returns:

o The retrieved parameter value, scaled appropriately.
set_parameter (self, name: str, param_type: str, value: float) -> None
Sets a parameter value on the device by sending the appropriate command.

e Parameters:
o name (str): The name of the parameter to set.
o param_type (str): The type of the parameter (e.g., "code").
o value (float): The value to set.

get_state (self, state_name: str) -> Optional [Dict [str, str]]

Retrieves and decodes the state of the device for a specified state command.

Maiman Electronics

e Parameters:

o state_name (str): The name of the state to retrieve.
e Returns:

o Adictionary of decoded state values.

set_state (self, state_name: str, state_values: Dict [str, str]) -> None
Sets the state of the device by sending commands to update specific bits.

¢ Parameters:
o state_name (str): The name of the state to set.
o state_values (Dict [str, str]): A dictionary of state values to set.

decode_state (self, bitmask: int, bits: Dict) -> Dict [str, str]
Decodes the device state from a bitmask by comparing the bits against predefined states.

¢ Parameters:
o bitmask (int): The bitmask value representing the state.
o bits (Dict): The bit layout and possible states.

e Returns:
o Adictionary mapping each bit to its decoded state.

check_device_status(self) -> Dict [str, str]

Checks the device's status by retrieving raw status bits and decoding them into human-readable
states.

e Returns:
o Adictionary containing the raw status and specific state flags (e.g., whether the
operation has started).

get_raw_status (self, state_name: str) -> int
Retrieves the raw status bitmask for a given state command.

e Parameters:

o state_name (str): The name of the state to retrieve.
e Returns:

o The raw status as an integer.

is_bit_set (self, state_name: str, bit: str) -> bool

Checks if a specific bit is set in a state bitmask.

Maiman Electronics

e Parameters:
o state_name (str): The name of the state.
o bit (str): The bit to check.

e Returns:
o True if the bit is set, otherwise False.

is_operation_state_started(self) -> bool

Checks if the "operation state started" bit is set.
is_current_set_internal(self) -> bool

Checks if the "current set internal" bit is set.
is_enable_internal(self) -> bool

Checks if the "enable internal” bit is set.
is_external_ntc_interlock_denied(self) -> bool

Checks if the "external NTC interlock denied" bit is set.
is_interlock_denied(self) -> bool

Checks if the "interlock denied" bit is set.

DeviceFactory Class

The DeviceFactory class is a Singleton factory responsible for creating and managing a single
instance of the Device class. This factory pattern ensures that only one instance of the Device object
is created throughout the application, providing a centralized way to retrieve the Device instance.

Class Attributes
_instance: Optional [Device]

A class-level attribute that holds the singleton instance of the Device class. It is initialized to None
and will store the first instance of the Device created by the factory.

Maiman Electronics

Static Methods

get_device (device_model: DeviceModel, serial_comm: SerialCommunication, device_config:
DeviceConfig, logger: Optional [Logger] = None) -> Device

Retrieves the singleton instance of the Device class. If the Device instance does not exist, it creates
a new one using the provided DeviceModel, SerialCommunication, DeviceConfig, and optional Logger
instances. Once created, the instance is reused for subsequent calls.

¢ Parameters:
o device_model (DeviceModel): The model used to manage device parameters and
commands.
o serial_comm (SerialCommunication): The serial communication handler for
communicating with the device.
o device_config (DeviceConfig): The configuration handler for loading device settings.
logger (Optional [Logger]): An optional logger instance for recording device events

and errors.
¢ Returns:
o The singleton Device instance.
¢ Behavior:
o Ifthe _instance attribute is None, a new Device instance is created using the provided
arguments.
o If the _instance attribute already contains a Device instance, that instance is
returned.

SerialCommunication Class

The SerialCommunication class handles communication over a serial port. It provides methods to
connect, send commands, and receive responses from a device. The class also supports serial
port configuration, sending both string and hexadecimal commands, and reading responses.

Constructor
__init__ (self, port=None)

Initializes the SerialCommunication instance, setting the default baud rate, timeout, and optional
port.

e Parameters:

Maiman Electronics

o port (str, optional): The serial port to connect to (e.g., "COM3").

Public Methods

connect(self)

Establishes a connection to the specified serial port. Raises an error if the port is not set or if
the connection fails.

e Raises:
o ValueError: If the serial port is not specified.
o ConnectionError: If the connection fails.

disconnect(self)
Closes the serial port connection if it is open.
send_command (self, command: str, value: int)

Sends a formatted command with a value to the device. Calls the internal method __send_ () to
handle the actual transmission.

¢ Parameters:
o command (str): The command to send.
o value (int): The value to accompany the command.

send_hex_command (self, command: str, value: int)

Sends a hexadecimal command to the device. This method formats the command string and
sends it to the device.

¢ Parameters:
o command (str): The command to send.
o value (int): The value to send as part of the command.

receive_response (self, command: str)

Receives a response from the device for a specific command. Calls the internal method
__receive__ () to handle the response.

e Parameters:

o command (str): The command to receive a response for.
e Returns:

o The parsed response as an integer.

9

Maiman Electronics

set_timeout (self, timeout: int)
Sets the timeout value for the serial communication.

e Parameters:
o timeout (int): The timeout value in seconds.

check _connection_status(self) -> bool

Checks if the serial connection is active by sending a simple command and waiting for a
response.

¢ Returns:

o True if the connection is active and the device responds.

o False if the connection is not active or the device fails to respond.
¢ Raises:

o |OError: If an error occurs while checking the connection status.

is_connected(self) -> bool
Checks whether the serial connection is open.

e Returns:
o True if the connection is open, otherwise False.

__repr__(self) -> str

Returns a string representation of the SerialCommunication object, including the port, baud rate,
timeout, and connection status.

Private Methods
__send__ (self, command: str, value: int)

Sends a command with a value to the connected device. The value is formatted as a
hexadecimal string and sent to the device.

e Parameters:
o command (str): The command to send.
o value (int): The value to accompany the command.
e Raises:
o ConnectionError: If there is no active serial connection.

__receive__ (self, command: str) -> int

10

Maiman Electronics

Sends a request for a response and waits for the device to respond. The response is then parsed
and returned as an integer.

e Parameters:
o command (str): The command to receive a response for.

¢ Returns:
o The parsed response as an integer.
¢ Raises:

o ConnectionError: If there is no active serial connection.
o ValueError: If the response is unexpected or invalid.

__write (self, data: str, delay: float)

Writes a command to the device and waits for a specified delay. This is a helper method to
manage command transmission timing.

¢ Parameters:
o data (str): The data to send.
o delay (float): The delay (in seconds) to wait after sending the command.

read_response (self, timeout: int = None) -> str

Reads the response from the device. The method waits until the response terminates with a
carriage return (\r) or until the timeout is reached.

¢ Parameters:

o timeout (int, optional): The timeout value for reading the response (default: class-
level timeout).

e Returns:
o The response string, or None if no response is received within the timeout.
e Raises:

o lOError: If an error occurs while reading the response.

parse_response (self, response: str) -> int

Parses the device's response and converts it to an integer. If the response contains an error
code, the method raises a ValueError.

e Parameters:
o response (str): The response string received from the device.

e Returns:
o The parsed response as an integer.
e Raises:

o ValueError: If the response contains an error or is otherwise invalid.

11

Maiman Electronics

DeviceModel Class

The DeviceModel class manages device parameters and state commands. It loads configuration
data, converts it into Command instances, and provides methods to set and get parameter
values. It also handles signed and unsigned values and supports error code management.

Constructor
__init__(self)

Initializes the DeviceModel with empty dictionaries for parameters, state commands, and error
codes.

e Attributes:
o parameters (Dict [str, Command]): A dictionary of device parameters.
o state_commands (Dict [str, Command]): A dictionary of device state commands.
o error_codes (Dict [str, str]): A dictionary of error codes and their descriptions.

Public Methods

load_parameters (self, config: Dict) -> List [Command]

Loads parameters from the given configuration dictionary and returns a list of Command
instances.

e Parameters:
o config (Dict): A dictionary representing the configuration data.

e Returns:
o Alist of Command instances created from the configuration.
has_parameter (self, name: str) -> bool
Checks if the given parameter exists in either the parameters or state_commands dictionary.
e Parameters:
o name (str): The name of the parameter.

¢ Returns:
o True if the parameter exists, otherwise False.

12

Maiman Electronics

set_value (self, name: str, paramtype: str, value: float)

Sets the value of a specific parameter by name and parameter type, performing necessary
calculations and handling signed values if applicable.

e Parameters:
o name (str): The name of the parameter.
o paramtype (str): The type of the parameter (e.g., "code").
o value (float): The value to set for the parameter.
¢ Returns:
o Atuple of (command_code, final_value) where:
= command_code (str): The code of the command to send.
= final_value (int): The final value after calculations.

e Raises:
o ValueError: If the parameter is not available.

get_value (self, name: str, paramtype: str) -> Optional[str]
Retrieves the command code for a specific parameter by name and type.

e Parameters:

o name (str): The name of the parameter.

o paramtype (str): The type of the parameter (e.g., "code").
e Returns:

o The command code if available, otherwise None.

Private Methods
__load_parameters (self, config: Dict) -> List [Command]

Loads parameters from the configuration into Command instances, clearing previous data.

e Parameters:

o config (Dict): The configuration data as a dictionary.
¢ Returns:

o A list of Command instances.

_load_command_parameters (self, items: Dict, dataclass_objects: List [Command])

Helper method that loads command parameters into Command instances and stores them in self.

parameters.

¢ Parameters:
o items (Dict): The dictionary of parameters.

13

Maiman Electronics

o dataclass_objects (List [Command]): A list of Command instances to append to.

_load_error_codes (self, items: List [Dict [str, str]])
Helper method that loads error codes into self. error_codes.

e Parameters:
o items (List [Dict [str, str]]): The list of error codes.

_load_state_commands (self, items: Dict, dataclass_objects: List [Command])

Helper method that loads state commands into Command instances and stores them in self.

state_commands.

e Parameters:
o items (Dict): The dictionary of state commands.
o dataclass_objects (List [Command]): A list of Command instances to append to.

__set_value (self, name: str, paramtype: str, value: float)

Sets a parameter's value, performing scaling with dividers and handling signed/unsigned
conversions if applicable.

e Parameters:
o name (str): The name of the parameter.
o paramtype (str): The type of the parameter (e.g., "code").
o value (float): The value to set for the parameter.
e Returns:
o Atuple of (command_code, final_value).

__get_value (self, name: str, paramtype: str) -> Optional[str]
Retrieves the command code for a given parameter and type.

e Parameters:

o name (str): The name of the parameter.

o paramtype (str): The type of the parameter (e.g., "code").
e Returns:

o The command code if available, otherwise None.

_find_command_code (self, name: str, paramtype: str) -> Optional[str]
Finds the command code for a specific parameter by name and type.

e Parameters:

14

Maiman Electronics

o name (str): The name of the parameter.

o paramtype (str): The type of the parameter (e.g., "code").
e Returns:

o The command code if available, otherwise None.

_get_divider (self, name: str, paramtype: str) -> Optional[int]
Retrieves the divider for a specific parameter, or defaults to 1.0 if not specified.

e Parameters:

o name (str): The name of the parameter.

o paramtype (str): The type of the parameter (e.g., "measured").
e Returns:

o The divider for the parameter.

_parse_hex_value (self, hex_value: Optional[str]) -> Optional[float]
Parses a hexadecimal value and converts it to a float.

e Parameters:

o hex_value (Optional[str]): The hexadecimal string to convert.
e Returns:

o The parsed value as a float, or None if no value is provided.

_convert_to_signed_hex (self, value: float) -> int
Converts a decimal value to a 16-bit two's complement signed integer.

e Parameters:
o value (float): The decimal value to convert.

e Returns:
o The value as a signed integer.
¢ Raises:

o ValueError: If the value is out of range for a 16-bit signed integer.
_convert_signed_value (self, value: int) -> int
Converts a 16-bit two's complement signed integer to a regular signed integer.

e Parameters:
o value (int): The value to convert.
e Returns:
o The converted value as an integer.

_get_isSigned (self, name: str) -> Optional[bool]

15

Maiman Electronics

Checks whether a parameter is signed.

e Parameters:
o name (str): The name of the parameter.
¢ Returns:
o True if the parameter is signed, otherwise False.

get_units (self, name: str) -> Optional[str]
Retrieves the units for a specific parameter.

e Parameters:
o name (str): The name of the parameter.
¢ Returns:
o The units of the parameter if available, otherwise None.

get_error_description (self, error_code: str) -> str
Retrieves the description for a given error code.

e Parameters:
o error_code (str): The error code.
¢ Returns:
o The description of the error, or "Unknown error code" if the code is not found.

Configuration Sections
The following sections are processed from the configuration dictionary:

e SECTION_ERROR_CODES: Represents error codes for the device.

e SECTION_PARAMETERS: Represents general parameters for the device.

e SECTION_STATE_COMMANDS: Represents state commands for the device.

e SECTION_TEC_COMMANDS: Represents TEC (Thermo-Electric Cooler) related commands.
e SECTION_TEC_STATE_COMMANDS: Represents state commands for TEC operations.

e SECTION_DEVICE_INFO: Contains device information such as version or serial number.

e SECTION_SYSTEM_COMMANDS: Represents system-level commands for the device.

DeviceConfig Class

The DeviceConfig class manages the loading, validation, and retrieval of device configurations
from a YAML file. It provides properties to access specific sections of the configuration, such as

16

Maiman Electronics

error codes, parameters, and commands, and includes methods to validate the structure and
integrity of the configuration.

Constructor
__init__(self)
Initializes the DeviceConfig object with the default file path for the configuration file.

e Attributes:
o file_path (str): The path to the YAML configuration file.
o config (Optional[dict]): The entire configuration loaded from the YAML file.
o device_config (Optional[dict]): The configuration specific to a particular device,
loaded based on the device ID.

Public Methods
load (self, device_id: int) -> dict
Loads the configuration for a specific device by ID and validates it.

e Parameters:
o device_id (int): The ID of the device whose configuration is to be loaded.

¢ Returns:
o Adictionary representing the device's configuration.

¢ Raises:
o FileNotFoundError: If the YAML configuration file is not found.
o ValueError: If the device ID is not found in the configuration or if the configuration

is invalid.
__repr__(self) -> str

Generates a string representation of the DeviceConfig object, showing the file path and a snippet
of the configuration.

¢ Returns:
o A string representation of the DeviceConfig instance.

17

Maiman Electronics

Private Methods

_load_yaml(self) -> None

Loads the YAML configuration file into the config attribute.

e Raises:
o FileNotFoundError: If the YAML configuration file is not found.

o ValueError: If there is an error in parsing the YAML file.
_validate_device_config (self, device_config: dict) -> None

Validates the structure of the device configuration, ensuring it contains required sections and
that parameters have valid codes.

¢ Parameters:
o device_config (dict): The configuration dictionary for a specific device.

e Raises:
o ValueError: If required sections or parameter codes are missing.

_get_section (self, section_name: str) -> dict

Helper method to retrieve a specific section of the device configuration.

e Parameters:
o section_name (str): The name of the section to retrieve (e.g., "error_codes",

"parameters").

e Returns:
o Adictionary representing the section of the configuration.
e Raises:

o ValueError: If the device configuration has not been loaded.

Properties
error_codes(self) -> list

Retrieves the error codes section from the device configuration.

e Returns:
o Alist of error codes from the device configuration.

parameters(self) -> dict

18

Maiman Electronics

Retrieves the parameters section from the device configuration.

¢ Returns:
o Adictionary of parameters from the device configuration.

state_commands(self) -> dict
Retrieves the state commands section from the device configuration.

e Returns:
o Adictionary of state commands from the device configuration.

tec_commands(self) -> dict
Retrieves the TEC (Thermo-Electric Cooler) commands section from the device configuration.

¢ Returns:
o Adictionary of TEC commands from the device configuration.

tec_state_commands(self) -> dict
Retrieves the TEC state commands section from the device configuration.

e Returns:
o Adictionary of TEC state commands from the device configuration.

device_info(self) -> dict
Retrieves the device information section from the device configuration.

e Returns:
o Adictionary of device information from the device configuration.

system_commands(self) -> dict
Retrieves the system commands section from the device configuration.

e Returns:
o Adictionary of system commands from the device configuration.

YAML File Structure

A typical YAML file is structured into sections based on the device's features and functionality.

19

Maiman Electronics

Devices

The root of the YAML file contains a devices section, which lists devices by their unique ID. Each
device entry includes:

¢ name: A human-readable name for the device.

e id: The device's unique identifier.

e error_codes, parameters, state_commands, tec_commands, and other sections for device
settings.

Error Codes

The error_codes section lists various error conditions the device might encounter. Each error
includes:

e name: A human-readable name for the error.
e code: The code returned by the device when the error occurs.
e description: A brief explanation of the error.

error_codes:
- name: "internal buffer overflow"
code: "E0000"
description: "Internal buffer overflow or command format invalid."

Parameters

The parameters section defines device parameters that can be controlled or measured. Each
parameter includes:

e name: The name of the parameter.

e code: The code used to set or read the parameter.

e min and max: The minimum and maximum allowable values (often represented by
codes).

o divider: A scaling factor used to convert the device's internal value to a human-readable
form.

e units: The units of the parameter (e.g., "Hz", "mA").

e measured: The code for retrieving the measured value of the parameter.

parameters:
current:
name: "current"
code: "0300"
min: "0301"
max: "0302"
divider: 10

20

Maiman Electronics

units: "mA"
measured: "0307"

State Commands

The state_commands section manages device state transitions, such as enabling or starting
operations. Each state command includes:

e name: The name of the state.
e code: The code used to read or modify the state.
e bits: A set of bit definitions within the state, each bit representing a sub-state of the
device. Each bit includes:
o name: A human-readable name for the bit.
o on_command and off_command: Commands to turn the state on or off.
o mask: A bitmask used to identify the state.
o states: The possible values and their corresponding meaning.

state_commands:
state_of device:
name: "ofDevice"
code: "0700"
bits:
"1
name: "operation state"
on_command: "0008"
off command: "0010"
mask: "0002"
states:
"0": "Stopped”
“1": "Started"

TEC Commands

The tec_commands section defines the parameters and state management for the Thermo-
Electric Cooler (TEC) component of the device. This includes temperature, TEC current, and
voltage settings. Each TEC command includes:

name: The name of the TEC command.
e measured: The code for retrieving the measured value.

e limit: The code for setting limits.
e divider: A scaling factor used to convert the internal value to a human-readable form.

e isSigned: A boolean indicating whether the value is a signed integer.

tec_commands:
tec_current:
name: "tecCurrent"”

21

Maiman Electronics

measured: "0A16"

limit: "0A17"
divider: 10
units: "A"

isSigned: true
System Commands

The system_commands section contains commands related to system-level operations, such as
saving device parameters or resetting the device.

system:
save_parameters:

name: "saveParameters"
code: "0900"

Command Dataclass
The command dataclass is a flexible representation of a command or parameter used by a device
in the DeviceControl system. It stores essential information about commands, including codes,

limits, descriptions, and optional details such as measurement scaling and bitmasks for complex
state commands.

Fields

name: str

The human-readable name of the command or parameter.
e Default: "

code: str

The command code, usually a hexadecimal string, which is sent to or received from the device.
o Default: "

min: str

The minimum value code for the parameter (if applicable).
o Default: "

max: str

22

Maiman Electronics

The maximum value code for the parameter (if applicable).
e Default: "

value: float

The current value of the command, which is either set or read from the device.
e Default: 0.0

description: str

A brief description of the command or its function.
e Default: "

divider: int

A scaling factor applied to the command's value to convert it to or from a more human-
readable form. For example, a value of 1000 with a divider of 10 would represent 100.0.

e Default: 1
isSigned: bool

Indicates whether the command's value is a signed integer (useful for commands representing
temperatures or other measurements that can be negative).

o Default: False

units: str

The units associated with the command (e.g., "mA", "Hz", "V").
e Default: "

properties: List[str]

A list of additional properties associated with the command. This can store any additional
details such as flags or characteristics.

o Default: [] (empty list)

23

Maiman Electronics

Additional Fields for Specific Command Types
These fields are optional and only relevant for specific types of commands:
min_value: Optional[float]

The minimum allowable value for the command, expressed as a floating-point number. Used
when the command has a specified numeric range.

max_value: Optional[float]
The maximum allowable value for the command, expressed as a floating-point number.
protection_threshold: Optional[float]

The protection threshold value for parameters that require protection settings (e.g., current or
voltage protection).

measured: Optional[str]

The code representing the measured value of the parameter. This is used when the command
involves reading a live or measured value from the device.

divider_measured: Optional[int]

A scaling factor applied to measured values. This is similar to divider, but specifically for
measured data.

bits: Optional[Dict[str, Dict[str, str]]]

A dictionary of bit-level details for state commands. Each bit has its own name, mask, and
possible states (e.g., "0": "Disabled", "1": "Enabled").

lower_limit: Optional[float]

The lower limit for the command's value.

upper_limit: Optional[float]

The upper limit for the command's value.

limit: Optional[str]

A string representing a command limit (e.g., "max current limit").

max_limit: Optional[str]

24

Maiman Electronics

The maximum limit code for commands that involve an adjustable limit.
min_limit: Optional[str]
The minimum limit code for commands that involve an adjustable limit.
DeviceStates Enum

The DeviceStates enum represents the possible states of the device. Each state is mapped to a
specific string value that corresponds to a command or device response.

Enum Values

e OPERATION_STATE_STARTED: Represents the state where the device has started its operation
("1).

e CURRENT_SET_INTERNAL: Represents the internal current setting state ("2").

e ENABLE_INTERNAL: Represents the internal enable state ("4").

e EXTERNAL_NTC_INTERLOCK_DENIED: Represents the state where an external NTC interlock is
denied ("6").

e INTERLOCK_DENIED: Represents the state where an interlock is denied ("7").

Logger Class

The Logger class provides an asynchronous logging mechanism for recording events and errors. It
supports log rotation, UTF-8 encoding, and configurable logging levels. The class processes log
asynchronously using a background thread and a queue.

Constructor

__init__ (self, log_file: str, max_file_size: int = 1024*100, backup_count: int = 5, enable_logging:
bool = True)

Initializes the Logger class and sets up the logging configuration.

e Parameters:
o log_file (str): The file path where logs will be stored.
o max_file_size (int): The maximum size of the log file before rotating (default: 100
KB).
o backup_count (int): The number of backup log files to maintain (default: 5).
o enable_logging (bool): Whether logging is enabled (default: True).
e Attributes:
o log_file (str): The path to the log file.

25

Maiman Electronics

enable_logging (bool): Flag to control whether logging is active.
max_file_size (int): The maximum size of a single log file in bytes.
backup_count (int): The number of backup log files to retain.
log_queue (Queue): A queue used for asynchronous log event processing.
logger (logging.Logger): The logger instance that manages file handling and
formatting.
e Log Rotation:

o The logger uses a RotatingFileHandler to automatically rotate log files when they
reach the specified max_file_size. Backup log files are maintained based on
backup_count.

o O O O O

Public Methods
eventRecording(self, event: LogEvent)
Asynchronously records an event by placing it in the log queue for processing.

¢ Parameters:
o event (LogEvent): The log event to be recorded.

errorRecording(self, message: str, error_code: Optional[int] = None)
Asynchronously records an error event with an optional error code.
e Parameters:
o message (str): The error message to log.
o error_code (Optional[int]): An optional error code associated with the error.
stop(self)
Stops the logging thread by sending a stop signal to the log queue.
start(self)
Restarts the logging thread if it was previously stopped.
path(self, new_path: str)

Updates the log file path and reinitializes the file handler with the new path.

e« Parameters:
o new_path (str): The new file path for the log file.

26

Maiman Electronics

Private Methods
_process_log_queue(self)

Processes log events from the queue asynchronously. This method runs in a background thread
and handles log events as they arrive.

_add_log_separator(self)

Adds a separator and timestamp to the log file at the start of each run. This makes it easier to
distinguish between different application sessions.

_ensure_utf8(self, message: str) -> str
Ensures that a log message is properly encoded in UTF-8. If encoding fails, it falls back to ASCII.
¢ Parameters:
o message (str): The log message to encode.

e Returns:
o The encoded message as a UTF-8 string, or ASCII if encoding fails.

LogEvent Dataclass

The LogEvent dataclass represents a single logging event, containing the log level, message, and
optional event data.

e Fields:
o level (str): The logging level (e.g., "INFO", "ERROR", "DEBUG").

o message (str): The message to log.
o event_data (Optional[dict]): Optional additional data for the log event.

Exception: DeviceError

The DeviceError class is a custom exception that represents a device-related error. It stores the
error code and description.

Constructor
__init__(self, code: str, description: str)
Initializes the DeviceError exception.

e Parameters:

27

Maiman Electronics

o code (str): The error code.
o description (str): A description of the error.
e Attributes:
o code (str): The error code associated with the exception.
o description (str): A human-readable description of the error.

Example of Usage

This section provides a practical example of how to use the Laser Diode Driver library. The script
below demonstrates how to initialize a device, configure it, and retrieve various parameters
such as frequency, duration, current, and voltage.

Running the Test Script

Ensure that the required dependencies are installed:
pip install -r requirements.txt

Example 1: Initializing the Device

Initialize necessary objects for the Device class

logger = Logger (r’C: \path_to_log\device_operations.log’)
device_config = DeviceConfig ()

serial_comm = SerialCommunication("COM4")

device_model = DeviceModel ()

Initialize the Device instance
device = Device (device_model, serial_comm, device_config, logger)
device. initialize_device ()

Explanation: This snippet demonstrates how to initialize the device with Logger, DeviceConfig,
SerialCommunication, and DeviceModel objects. The device is then initialized using the initialize_device
() method, which sets up the configuration and device parameters.

Example 2: Setting and Getting Device Parameters

Set and get frequency
device.set_frequency code (180.6)
frequency = device.get_frequency_code ()
print (f"Frequency Code: {frequency}")

Set and get current
device.set_current_code (1234.897)
current = device.get_current_code ()
print (f"Current Code: {current}")

28

Maiman Electronics

Explanation: This section shows how to set and retrieve specific parameters such as frequency
and current using dynamically generated methods (set_frequency_code, get_frequency_code).

Example 3: Managing Device States

Set and retrieve device state
device_state = device. getState_ofDevice ()
print (f"Device State: {device_state}")

Set new state values

state_values = {
"Operation state": "Stopped”,
"Current set": "External”,
"enable": "Internal”,
"External NTC interlock": "Denied",
"interlock": "Denied"

}

device. setState_ofDevice(state_values)

Explanation: This example illustrates how to retrieve the device's current state and set new
state values for various operations (e.g., operation state, current set).

Example 4: Retrieving Device Status

Check raw device status
raw_status_device = device.get_raw_status("ofDevice")
print (f"Device Raw Status: {raw_status_device:04X}")

Check device status summary
status = device. check_device_status ()
print (f"Device Status: {status}")

Explanation: This snippet demonstrates how to check the raw device status using get_raw_status
() and how to check the device's overall status using check_device_status ().

List of methods used in the Script

1. Device Initialization and Setup:
o initialize_device ()
2. Setting and Getting Parameters:
o set_frequency_code (value: float)
o get_frequency_code () -> float
o set_current_code (value: float)
o get_current_code () -> float

29

Maiman Electronics

OO0 o o o O OO OO O OoOO0OO0OO0OO0OO0OOoOO0OO0OO0OO0OO0OO0OBO0OO0OOO0OO0OO0OO0OO0oOOoOOoOOoOOoOOoOOoOOoOo

@)

set_duration_code (value: float)
get_duration_code () -> float
get_voltage_measured () -> float
set_ntcTemperature_min (value: float)
get_ntcTemperature_min () -> float
set_ntcTemperature_max (value: float)
get_ntcTemperature_max () -> float
get_ntcTemperature_measured () -> float
set_currentCalibration_code(value: float)
get_currentCalibration_code() -> float
get_current_min() -> float
get_current_max() -> float
get_current_measured() -> float
get_current_protection_threshold() -> float
get_serialNumber_code() -> int
get_deviceld_code() -> int
get_saveParameters_code() -> str
get_resetParameters_code() -> str
set_temperature_code(value: float)
get_temperature_code() -> float
get_temperature_min() -> float
set_temperature_max(value: float)
get_temperature_max() -> float
get_temperature_max_limit() -> float
get_temperature_min_limit() -> float
get_temperature_measured() -> float
get_tecCurrent_measured() -> float
set_tecCurrent_limit(value: float)
get_tecCurrent_limit() -> float
get_tecVoltage_measured() -> float
set_tecCurrentCalibration_code(value: float)
get_tecCurrentCalibration_code() -> float
set_internalLdNtcSensor_code(value: float)
get_internalLdNtcSensor_code() -> float
set_pCoefficient_code(value: float)
get_pCoefficient_code() -> float
set_iCoefficient_code(value: float)
get_iCoefficient_code() -> float
set_dCoefficient_code(value: float)
get_dCoefficient_code() -> float

3. Managing Device State:

O
O
@)
O

getState_ofDevice() -> Dict[str, str]
setState_ofDevice(state_values: Dict[str, str])
getState_lockStatus() -> Dict[str, str]
getState_tecState() -> Dict[str, str]

4. Device Status and Raw Status:

O
@)

get_raw_status(state_name: str) -> int
check_device_status() -> Dict([str, str]

5. Utility Methods:

o

disconnect()

30

Maiman Electronics

Expected Output (example)

When running the script, you can expect output similar to the following:
Frequency Code: 180.6

Frequency Min: 10.0

Frequency Max: 200.0

Duration Code: 6.98

Duration Min: 1.0

Duration Max: 10.0

Current Code: 1234.897

Current Min: 100.0

Current Max: 1500.0

Voltage Measured: 24.0 V

Device State: {'operation state': 'Stopped’, 'current set': 'Internal’,
Device Raw Status: 0700

I

enable': 'Internal'}

Creating Custom Methods

The Device class supports dynamic method creation for getting and setting parameters. To
retrieve or set new parameters, methods can be created in the following format:

o To set a parameter: set_<parameter>_code(<value>)
e To get a parameter: get_<parameter>_code()

o Example: set_frequency_code(100) or get_frequency_code()

This flexibility allows users to easily extend the functionality of the library without modifying
the internal code.

31

